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The vertex cover problem is a prototypical hard combinatorial optimization problem. It was studied in recent
years by physicists using the cavity method of statistical mechanics. In this paper, the stability of the finite-
temperature replica-symmetric �RS� and the first-step replica-symmetry-broken �1RSB� cavity solutions of the
vertex cover problem on random regular graphs of finite vertex degree K are analyzed by population dynamics
simulations. We found that �1� the lowest temperature for the RS solution to be stable, TRS�K�, is not a
monotonic function of K; �2� at relatively large connectivity K and temperature T slightly below the dynamic
transition temperature Td�K�, the 1RSB solutions with small but non-negative complexity values are stable, and
�3� the dynamical transition temperature Td and Kauzmann temperature TK is equal to each other. Similar
results are obtained on random Poissonian graphs.
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I. INTRODUCTION

The vertex cover �VC� problem, which asks to find a set
of vertices of a graph such that the number of vertices in this
set is less than a given value and that each edge of the graph
is incident to at least one of the vertices in the set, is a
prototype of NP-complete problems �1,2� with wide range of
real-world applications �3–5�. In the last ten years, the VC
problem defined on the ensemble of large random graphs
was extensively studied using mean-field spin glasses meth-
ods, especially the zero-temperature cavity method �6–10�. It
is found that, when the average connectivity c of the random
graph is such that c�e=2.71828. . ., the random minimal
vertex cover �MVC� problem, which corresponds to vertex
covers of the minimal size for a given random graph, can be
described by the replica-symmetric �RS� cavity theory. In
this parameter range, minimal vertex covers for a given ran-
dom graph can be constructed using a leaf-removal algo-
rithm �11� or by a simple message-passing warning propaga-
tion algorithm �6�. When c�e, the RS cavity theory is
insufficient for the MVC problem, but the cavity theory at
the level of first-step replica-symmetry-breaking �1RSB� is
still able to give accurate predictions on the average size of
minimal vertex covers �7,8� and the average ground-state
entropy �12�. Following the zero-temperature 1RSB cavity
theory, a survey propagation algorithm was used in Ref. �8�
to construct minimal vertex covers for single random graphs.

Similar as the mean-field work on the random
K-satisfiability problem �13–15�, the zero-temperature cavity
calculations of Refs. �7,8� for the VC problem considers only
the energetic effect and ignores completely the entropic ef-
fect. To have a more comprehensive understanding of the
random VC problem, in the present paper a finite tempera-
ture T is introduced into the VC problem. The stabilities of
the mean-field RS and 1RSB cavity solution for the VC
problem at finite temperature are analyzed following earlier
works of Refs. �16–22�. The T→0 limit of these solutions

and their stability are also studied. A similar analysis was
recently carried out for the random Q-coloring problem by
Krząkała and Zdeborová �16�. The results reported in this
paper suggest that the VC problem and the Q-coloring prob-
lem have some important differences. On random regular
graphs with connectivity K, for the VC problem we find that
the lowest temperature for the RS solution to be stable,
TRS�K�, is not a monotonic function of K. The same non-
monotonic behavior is observed for the VC problem on ran-
dom Poisson graphs. We also find that, for random regular
graphs with relatively large connectivity K, there is a tem-
perature range TRS�K��T�Td�K� in which both a stable RS
solution and a stable 1RSB solution coexist, where Td�K� is
the dynamical transition temperature of the system. Such a
coexistence has been noticed in some many-body-interaction
systems �e.g., the random K-satisfiability problem with K
�4 �17�� and many-state systems �e.g., the Q-coloring prob-
lem with Q�4 �16��, our work demonstrates that the same
coexistence of stable mean-field descriptions can occur in a
two-body-interaction and two-state system. The numerical
results of this work suggest that, for random regular graphs
with relatively large connectivity K and temperature T
�Td�K�, the 1RSB cavity solutions with small but non-
negative complexity values may be stable toward further
steps of replica symmetry breaking.

The paper is organized as follows. Section II includes
some definitions. In Sec. III we consider the RS solution and
its stability. In Sec. IV we consider the finite-temperature
1RSB solution and its type-II stability. We also compare re-
sults obtained by the finite-temperature stability analysis
with those obtained using both the energetic and the entropic
zero-temperature stability analysis. We conclude this work in
Sec. V. Some of the technical details are included in the two
appendixes of this paper.

II. DEFINITIONS

Two ensembles of random graphs are considered in this
paper, namely, Erdös-Renyi �ER� random graphs �23� and
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regular random graphs. An ER random graph G has N verti-
ces and M = �c /2�N different edges, where the edges are cho-
sen completely random from the set of N�N−1� /2 candidate
edges between vertex-pairs. An edge of the graph which
links between vertices i and j is denoted by �i , j�. The vertex
degree ki of a vertex i is equal to the number of edges that
are linked to vertex i. The mean value of vertex degrees as
averaged over all the vertices of graph G is equal to c. For a
large ER random graph, the fraction of vertices with a given
degree k is given by the Poisson distribution fc�k�
�e−cck /k!. Because of this reason, an ER random graph is
also called a Poisson random graph.

A regular random graph has N vertices and M = �K /2�N
edges, with each vertex having exactly K edges. The M
edges in a regular random graph are randomly connected
under the constraint that each vertex has K edges attached.

A vertex cover of graph G is a subset of vertices U that
covers all edges. Here, cover means that for each edge �i , j�
in the graph at least one of the two end vertices is in the set
U. We denote the state of each vertex i by a Ising spin �i
� ��1�: �i=−1 if i�U and �i=+1 if otherwise. All the ver-
tex covers of graph G form a solution subspace out of the
total number of 2N possible spin configurations. Each vertex
cover ��i����1 ,�2 , . . . ,�N� is assigned an energy

E���i�� = 	
i=1

N

��i,−1, �1�

which is equal to the cardinality of the vertex cover.
We introduce a temperature T and weight each vertex

cover by the Boltzmann factor e−�E, where �=1 /T is called
the inverse temperature. The total partition function Z and
the free energy F��� are then defined by

Z � e−�F��� = 	
��i�

e−�E���i��

�i,j�

�1 − ��i,1
��j,1

� , �2�

and the Gibbs measure for each vertex cover is

P���i�� =
1

Z
e−�E���i��


�i,j�
�1 − ��i,1

��j,1
� . �3�

In Eqs. �2� and �3�, the term 
�i,j��1−��i,1
��j,1

� is equal to
unity or zero depending on whether the spin configuration
corresponds to a vertex cover or not. Only vertex covers
contribute to the free energy of the system. The T→0 limit
of Eq. �2� corresponds to the MVC problem. In this case,
only those ground-state solutions have nonzero Gibbs mea-
sure.

Under the Gibbs measure Eq. �3� the marginal probability
�i of a vertex i being covered is expressed as

�i = 	
��j�

P��� j����i,−1. �4�

�i is called the cover ratio of vertex i. A direct computation
of the cover ratios �i is difficult for large random graphs, but
approximate values for �i can be obtained using the cavity
method.

III. STABILITY OF THE REPLICA SYMMETRIC
CAVITY THEORY

A. Replica-symmetric cavity equations at finite temperatures

According to the replica-symmetric cavity theory �24�, the
free energy at inverse temperature � can be calculated by

F��� = 	
i�G

	Fi − 	
�i,j��G

	F�i,j�, �5�

where 	Fi and 	F�i,j� are, respectively, the free-energy shift
due to the addition of vertex i and edge �i , j�. The free-
energy expression �Eq. �5�� corresponds to the zeroth-order
term of a loop series expansion for the total partition func-
tion Eq. �2� �25�. The set of nearest neighbors for a vertex i
is denoted as �i. Because of the locally treelike structure of a
random graph G, in the absence of vertex i, the length of the
shortest paths between two vertices j, k in the set �i diverges
logarithmically with the graph size N. It is then assumed that
in the absence of vertex i the spin values on the vertices of
the set �i are mutually independent. Under this Bethe-Peierls
approximation, the free-energy shift associated with the ad-
dition of vertex i is expressed as

	Fi = −
1

�
log�e−� + 


j��i

� j�i��� , �6�

where � j�i��� is the probability of vertex j being covered in
the absence of vertex i. In Eq. �6�, the term e−� corresponds
to vertex i being covered ��i=−1�, while the term 
 j��i� j�i
corresponds to vertex i being uncovered �then all the neigh-
bors of i need to be covered�. Under the same Bethe-Peierls
approximation, the free-energy shift 	F�i,j� is expressed as

	F�i,j� = −
1

�
log�1 − �1 − �i�j�����1 − � j�i����� . �7�

The free energy F as expressed by Eq. �5� is a functional
of the 2M cavity probabilities �� j�i�, two on each edge �i , j�.
At equilibrium, the free energy F should reach a minimal
value. Then the variational condition

�F

�� j�i
= 0 �8�

leads to the following iterative equation for each cavity prob-
ability � j�i,

� j�i = FRS���k�j�� =
e−�

e−� + 
k��j\i�k�j���
, �9�

where �j \ i denotes the remaining set after vertex i is re-
moved from set �j. When a fixed point is reached for the set
of iterative equations Eq. �9�, the mean energy �E� and en-
tropy S of the system are then calculated according to

�E� =
d�F

d�
= 	

i

e−�

e−� + 
 j��i� j�i���
, �10�

S = ���E� − F� . �11�

For a single graph G, we denote by PRS��� the probability
of observing a cavity probability with value � j�i=�, namely,
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PRS��� =
1

2M
	

�i,j��G
���� j�i��� − �� + ���i�j��� − ��� ,

�12�

where ��x� is the Dirac delta function. When the size N of a
random graph G is sufficiently large, the probability distribu-
tion P��� becomes independent of the detailed connection
pattern of the graph. It only depends on the vertex degree
profile of the graph and the inverse temperature �. We can
write down the following self-consistent equation for P���:

PRS��� = pnn�1���� −
e−�

e−� + 1
 + 	

k=1




pnn

��k + 1�� 

j=1

k

�d� jPRS�� j����� −
e−�

e−� + 
 j=1
k � j

 .

�13�

In Eq. �13�, pnn�k+1� is the probability that a randomly cho-
sen nearest neighbor of a vertex have vertex degree k+1.

For ER random graphs, pnn�k+1�= �k+1�fc�k� /c= fc�k�,
i.e., it is also a Poisson distribution. A fixed-point solution
for Eq. �13� can be obtained by population dynamics simu-
lation �24�. In terms of the cavity probability distribution
PRS���, the densities for the free energy, mean energy, and
entropy can be rewritten as

f � F/N = −
1

�
fc�0�log�e−� + 1�

−
1

�
	
k=1




fc�k�� 

j=1

k

�d� jPRS�� j��log�e−� + 

j=1

k

� j
+

c

2�
� d�iPRS��i�d� jPRS�� j�log�1 − �1 − �i��1 − � j�� ,

�14�

ē � �E�/N = fc�0�
e−�

e−� + 1

+ 	
k=1




fc�k�� 

j=1

k

�d� jPRS�� j��
e−�

e−� + 
 j=1
k � j

, �15�

s � S/N = ��ē − f� . �16�

The mean energy and entropy density of the vertex cover
problem on ER random graphs of mean degree c�2.7183
are shown in Fig. 1. At a given value of �, the mean energy
density increases continuously with the mean vertex degree
c. On the other hand, the mean entropy first increases with c
when c is small and then decreases with c when c exceeds
certain temperature-dependent value.

For regular random graphs, pnn�k+1� in Eq. �13� is ex-
pressed as pnn�k+1�=�k

K−1. In the replica-symmetric cavity
theory, it is therefore assumed that the cavity cover ratio
distribution PRS��� is a Dirac delta function PRS���=���
−���, with �� determined by

��e−� + ��
K − e−� = 0. �17�

The mean free-energy density and energy density are calcu-
lated by

f = −
1

�
log�e−� + ��

K� +
K

2�
log�2�� − ��

2� , �18�

ē =
e−�

e−� + ��
K . �19�

B. Entropic zero-temperature limit

The energetic zero-temperature limit of the RS cavity
theory is very easy to implement. In this limit, one only
interests in whether a given vertex is always uncovered
among all the MVCs, and a warning propagation algorithm
can be constructed for the vertex cover problem in this limit
�8�. In this subsection, we study the entropic zero-
temperature limit so that the entropy of MVCs can also be
calculated.

It is helpful to define two auxiliary parameters �i��� and
� j�i��� through

(b)(a)

FIG. 1. �Color online� Mean vertex cover energy density and entropy density as a function of the mean vertex degree of the ER random
graph. Different curves correspond to different temperature T. The circular symbols are simulation results of Ref. �6�.
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�i��� =
1

�
log� �i���

1 − �i��� , �20�

� j�i��� =
1

�
log� � j�i���

1 − � j�i��� . �21�

The physical meanings of �i and � j�i are obvious: ��i
=log��i / �1−�i�� is the log-likelihood of vertex i being cov-
ered, and �� j�i is the log-likelihood of vertex j being covered
in the absence of vertex i. The iterative equation �9� can be
rewritten as

� j�i��� = − 1 + 	
k��j\i

1

�
log�1 + e−��k�j� . �22�

At T→0��→+
� we assume that

� j�i = mj�i +
rj�i

�
, �23�

with mj�i being an integer and rj�i being a finite real value.
Then From Eq. �22� we get the iteration equations for mj�i
and rj�i,

mj�i = − 1 + 	
k��j\i

�− mk�j� , �24�

rj�i = 	
k��j\i

��1 − ��mk�j���log�1 + e−rk�j� − �− mk�j�rk�j� ,

�25�

where �x� is the Heaviside function defined by �x�=1 for
x�0 and �x�=0 for x�0.

At the limit of �→
, the free energy Eq. �14�, energy Eq.
�15�, and entropy Eq. �16� can all be expressed in terms of
�mj�i ,rj�i�. From these expressions, the mean ground-state en-
ergy and entropy densities of the VC problem on an ER
random graph can easily be evaluated by population dynam-
ics. The theoretical predictions on the mean energy and en-
tropy density of the MVC problem are also shown in Fig. 1,
together with the simulation results of Weigt and Hartmann
�6�. For mean connectivity c�2.7183 the agreement be-
tween theory and simulation results is good. In the popula-
tion dynamics simulation, we have noticed that when c
�2.7183, the amplitude of some rj�i values approaches infin-
ity when mj�i=0. Such type of divergence then lead to a
negative value for the entropy density of the MVC problem
�see also Ref. �12��. As we will discuss in the next subsec-
tion, for ER random graphs with c�2.7183, the zero-
temperature RS cavity theory is no longer valid and a more
advanced mean-field theory is needed.

We notice that, the divergence of the residue fields rj�i as
observed for the random MVC problem does not occur in the
random maximal matching problem �26�. For the random
maximal matching problem, the RS cavity theory is stable at
any temperature.

C. Stability of the replica-symmetric solution

At low enough temperatures and/or high mean vertex de-
grees, the Bethe-Peierls approximation used in the RS cavity

equations is no longer valid. Then the RS cavity theory be-
comes unstable to higher levels of replica symmetry break-
ing. The stability of the RS cavity equations can be checked
by studying the point-to-set correlations in the graph
�27–29�. If these correlations do not decay to zero at large
distances, then nontrivial solutions exist for the one-step
replica-symmetry-breaking �1RSB� cavity equations at Parisi
parameter m=1. The dynamical transition temperature Td,
which is defined by the critical temperature where point-to-
set correlation begin to diverge, can be checked using 1RSB
equations at m=1 �see Appendix A for a detailed calculation
of Td�.

An easier way to check the validity of the RS assumption
is to study the local stability of the RS solution. This local
stability analysis leads to a threshold temperature TRS. How-
ever, the local stability of the RS solution is a necessary but
not a sufficient condition for RS correctness and in general,
TRS�Td. In this paper, the way of checking the local stability
of the RS solution is to study the spin-glass susceptibility
�19,26� as defined by

�SG =
1

N
	
i�j

��i� j�c
2, �26�

where ��i� j�c���i� j�− ��i��� j� is the connected correlation
between vertex i and vertex j. The above equation can be
re-expressed as

�SG =
2

N
�N1��i� j�1��c

2 + N2��i� j�2��c
2 + ¯ + Nd��i� j�d��c

2

+ ¯� , �27�

where Nd is the total number of vertex-pairs of distance
�minimum path length� d in the graph G; � j�d� denotes a
vertex j which is separated from vertex i by a distance d; and
��i� j�d��c

2 denotes the mean value of ��i� j�d��c
2 as averaged

over all the Nd vertex pairs �i , j� of distance d. For a large ER
random graph with mean connectivity c, Nd=N�cd /2� when
d is much smaller than the length of a typical loop in the
graph �d� logc N�, while for a large regular random graph
with vertex degree K, the scaling is Nd=NK�K−1�d−1 /2. On
the other hand, using the locally treelike property of a ran-
dom graph G, it can be shown that

��i� j�d��c
2 � ��d−1�, �28�

where

���� = � �� j�i

��k�j
�2

= � e−�
l��j\i,k�l�j���

�e−� + 
l��j\i�l�j����2�2

. �29�

In the above equation, the overline means averaging over all
the paths k→ j→ i of length two in the graph G.

For a regular random graph, the spin-glass susceptibility
�SG remains finite in the thermodynamic limit of N→
 if
and only if �K−1������1. This condition is re-expressed as

�K − 1�� e−���
K−2

�e−� + ��
K−1�2�2

� 1, �30�

where �� is the solution of Eq. �17�.
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The local stability boundary for the RS cavity theory as
predicted by Eq. �30� and the dynamical transition tempera-
ture Td are shown in Fig. 2�a�. At K=2, the RS solution is
locally stable at any temperature. When K�3 the RS solu-
tion is only stable at temperatures T�TRS. The critical tem-
perature TRS is not a monotonic function of graph degree K
but rather has a maximal value at K=6. Such a re-entrant
behavior is also observed for random ER graphs �Fig. 2�b��.
It is not yet clear why the RS solution of the VC problem on
a random regular graph of K=6 is the most easiest to be
unstable. At small values of K, Td=TRS But when K�16,
Td�TRS. The 1RSB solution at m=1 �see the next section
and Appendix A� begins to have a nontrivial solution at T
=Td, suggesting that the configuration space of the system
starts to splitting into many Gibbs pure states. In the tem-
perature region TRS�T�Td, although the RS solution still
remains locally stable, it does not correctly describe the
property of the system. In our numerical solutions, we find
that the Kauzmann temperature TK, which corresponds to
zero complexity ���m=1�=0, see next section�, is always
equal to Td.

For an ER random graphs, the convergence condition for
the spin-glass susceptibility �SG is c�����1. For this en-
semble of graphs, we can not determine the stability bound-
ary analytically. Instead, we iterate a stability parameter 	i�f
in population using population dynamics, where

	i�f = 	
j��i\f

� e−�
j��j�j��i

�e−� + 
 j��i\f� j�i
2 ��2

	 j�i. �31�

If 	 j�f �1 after iterating for a long enough time, the RS
solution is then locally stable; otherwise it is locally un-
stable. The local stability boundary for the RS cavity solution
is shown in Fig. 2�b�. When c�2.7183 the RS solution is
always stable and 1RSB equation at m=1 has trivial solution.
When c�e, the RS solution is stable at high temperatures
and becomes unstable blow a threshold temperature TRS�c�.
The threshold temperature TRS�c� has a maximal value at
mean vertex degree c�20. Similar with those of regular ran-
dom graphs, Td=TRS at relative small average connectivity
and Td becomes larger than TRS when c� =30.

D. Infinite-connectivity limit

When the connectivity �c for ER graphs and K for regular
random graphs� is large, we see from Eq. �9� that � j�i should
be very close to 1. In the case of regular random graphs, the
solution at the K→
 limit of Eq. �17� has the following
property:

lim
K→


��
K = 0, lim

K→

�� = 1. �32�

At this limit, the free-energy density and mean energy den-
sity both equal to unity, and the entropy density is zero. This
means that when the connectivity goes to infinity, there is
only one vertex cover for the graph which includes all the
vertices. At K→
, the local stability condition for the RS
solution is

lim
K→


��
2K−4�K − 1�e2� � 1, �33�

which is satisfied at any finite temperature. Therefore the RS
solution is locally stable at any finite temperature for an in-
finitely connected regular random graph.

For ER random graphs, we do not have an analytical ex-
pression for the large c limit, but we have checked by popu-
lation dynamics simulations that the results are the same as
those in regular random graphs: the cover ratio and the en-
ergy density both go to unity, the entropy density goes to
zero and the RS solution is locally stable at any finite tem-
perature.

IV. STABILITY OF THE FIRST-STEP REPLICA-
SYMMETRY-BROKEN CAVITY SOLUTION

A. 1RSB solution at finite temperatures

When the RS mean-field solution to the random vertex
cover problem is unstable, one can try to describe the system
using the first-step replica-symmetry-breaking spin-glass
theory. In the 1RSB theory, the configuration space of the
system is divided into many subspaces or macrostates. Each
macrostate � has a free energy F���� and its contribution to
the statistical property of the system is weighted by a Bolt-
zmann factor exp�−yF�����, where y is the adjustable in-

(b)(a)

FIG. 2. �Color online� �a� RS local instability temperature TRS and dynamical transition temperature Td of the vertex cover problem on
regular random graphs �a� and ER random graphs �b�. When T�TRS, RS solution become locally unstable; When T�Td, 1RSB solution at
m=1 has nontrivial solution.
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verse temperature at the level of macrostates. The ratio m
�y /�=yT is called the Parisi parameter. The grand free-
energy density �also called the replicated free-energy den-
sity� g�y ,�� is defined as

g�y,�� = −
1

Ny
log�	

�

exp�− yF������
= −

1

Ny
log�� dfe−Nyf+N��f�� , �34�

where f denotes the free-energy density of a macrostate and
exp�N��f�� is the density of macrostates with free-energy
density f . The quantity ��f� is called the complexity. Taking
the N→
 limit, at saddle point we have

g�y,�� = min
f

�f − ��f�/y� . �35�

The macrostates with the lowest free-energy density f0���
corresponds to the point of zero complexity, ��f0����=0.
Depending on the value of the parameter y �or equivalent the
Parisi parameter m� the free-energy density f of the mac-
rostates which contribute to the grand free-energy density
g�y ,�� is determined by

d��f�
df

= y . �36�

In the 1RSB cavity theory, the order parameter is no
longer the cover ratio � j�i but the distribution profile Qj�i�� j�i�
of � j�i over all the macrostates. Equation �9� is generalized
into

Qj�i�� j�i� = F1RSB��Qk�j��

=
1

Zj�i
�� 


k��j\i
d�k�jQk�j��k�j��e−y	Fj�i

���� j�i −
e−�

e−� + 
k��j\i�k�j
 , �37�

where Zj�i is a normalization factor, and the expression for
	Fj�i is

	Fj�i = −
1

�
log�e−� + 


k��j\i
�k�j��� . �38�

At given inverse temperatures � and y, a fixed-point solution
�Qj�i�� j�i�� of Eq. �37� for a given random graph can be ob-
tained by population dynamics. The corresponding grand
free-energy density g, mean free-energy density �f� �aver-
aged over all the macrostates�, and complexity can be ob-
tained by the following equations:

g =
1

N
	

i

	Gi −
1

N
	
�i,j�

	Gij , �39�

�f� =
1

N
	

i

�	Fi� −
1

N
	
�i,j�

�	Fij� , �40�

� = y��f� − g� . �41�

In the above equations, 	Gi and 	Gij are, respectively, the
shift of the grand free energy of the system due to the addi-
tion of a vertex i and an edge �i , j�,

	Gi = −
1

y
log�� 


j��i

d� j�iQj�i�� j�i�e−y	Fi� , �42�

	Gij = −
1

y
log�� d� j�id�i�jQj�i�� j�i�Qi�j��i�j�e−y	Fij�;

�43�

and �	Fi� and �	Fij� are, respectively, the mean value of the
changes 	Fi and 	Fij over all the macrostates,

�	Fi� =
�
 j��id� j�iQj�i�� j�i�	Fie

−y	Fi

�
 j��id� j�iQj�i�� j�i�e−y	Fi
, �44�

�	Fij� =
�d� j�id�i�jQj�i�� j�i�Qi�j��i�j�	Fije

−y	Fij

�d� j�id�i�jQj�i�� j�i�Qi�j��i�j�e−y	Fij
. �45�

To characterize the statistical property of the vertex cover
problem on a random graph, what we need is a distribution
of the distribution Qj�i�� j�i� among all the directed edges j
→ i of the graph. Let us denote this distribution as
P1RSB�Q����. Similar to Eq. �13� we can write down the
following self-consistent equation for P1RSB�Q�,

P1RSB�Q���� = pnn�1���Q��� − ��� −
e−�

e−� + 1
�

+ 	
k=1




pnn�k + 1�� 

j=1

k

�DQjP1RSB�Qj��

���Q��� − F1RSB��Qj��� . �46�

For graphs with a general vertex degree distribution, Eq. �46�
can be solved numerically by population dynamics on a two-
dimensional array �see, e.g., Ref. �30��. In the special case of
random regular graphs, the probability distribution P1RSB�Q�
has a simple form,

P1RSB�Q���� = ��Q��� − Qc���� . �47�

Then Eq. �46� can be rewritten as a self-consistent equation
for a single probability function Qc���, and the numerical
task is much simplified.

B. 1RSB Stability analysis

The stability of the 1RSB cavity solution is analyzed in
the solution space of the second-step replica-symmetry-
breaking �2RSB� cavity theory. In the 2RSB cavity theory,
for each directed edge j→ i the order parameter is the distri-
bution of Qj�i�� j�i� over all the domains of macrostates,
which is denoted by Q j�i�Q�. The iteration equation for this
distribution reads
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Q j�i�Q� =
1

Z j�i
� 


k��j\i
DQk�jQk�j�Qk�j�e−y2	Gj�i�

��Q − F1RSB��Qk�j��� , �48�

where Z j�i is a normalization constant, y2 is the inverse tem-
perature at the level of domains of macrostates, and 	Gk�j is
expressed as

	Gk�j = −
1

y
log�� 


k��j\i
d�k�jQk�j��k�j�e−y	Fk�j� . �49�

If on each directed edge j→ i the iteration equation Eq. �48�
converges to the fixed-point solution Q j�i�Q����=��Q���
−Qj�i����, then the 1RSB solution is said to be stable toward
further steps of replica symmetry breaking.

According to Refs. �20,21,31�, there are two types of in-
stabilities the 1RSB cavity solution Eq. �37� can show to-
ward nontrivial 2RSB solutions. The first type of instability
�type-I instability� is state aggregation: the 1RSB mac-
rostates aggregate into 2RSB domains, while they them-
selves as described by Eq. �37� contain no further internal
structures. The type-I instability can be studied by tracing the
propagation of a small perturbations to the distribution
Q�� j�i� during the 1RSB iteration. But in practice it is rather
difficult to implement such a check since the distribution
Qj�i��� has to be represented by an array in the numerical
population dynamics simulation. In this paper, the type-I in-
stability analysis is performed only at zero temperature for
the energetic cavity solution but not at finite temperatures.

The second type �type-II� instability is state fragmenta-
tion: a 1RSB macrostate is itself composed of many submac-
rostates. Numerically, this type of instability can be studied
by tracing the propagation of a small perturbation to �i�j
during the 1RSB iteration. The easiest way to do this is the
deviation of two replicas method �19,32�. One first iterates
the 1RSB population dynamics to reach a steady state, and
then creates a replica of the whole population and gives a
small perturbation to each �i�j value of the origin population.
These two populations are then updated using the same se-
quence of random numbers for a sufficiently long time. If the
difference between the two populations decays to zero with
time, then the 1RSB cavity solution is type-II stable. Another
method of checking type-II stability is noise propagation: we
bind a noise � j�i to each � j�i in the population. Then we
iterate the population using Eq. �37� until a steady state is
reached. At the same time, the values of � j�i’s are updated
using Eq. �31�. If 	 j� j�i is decreasing with iteration �equiva-
lently, 	 j� j�i�1 finally�, then the 1RSB iteration is stable.
We have checked both methods and find that they always
give the same result.

1. Case of random regular graphs

Figure 3 shows the phase diagram for the random regular
graph VC problem with connectivity K=5. When tempera-
ture T�TRS�K=5�=0.358 the RS solution is stable. When
T�TRS�5� the RS solution becomes unstable and Td=TK
=TRS. The 1RSB solution is type-II stable only when the
Parisi parameter m is sufficiently large. On the other hand,

the physically meaningful values of m�m�, which corre-
spond to ��m��0, are all in the type-II unstable region �the
value m� with ��m��=0 as a function of T is shown by the
dotted line in Fig. 3�. Therefore for K=5 the 1RSB cavity
solution is insufficient to describe the statistical physics
property of the VC problem. The same qualitative results are
obtained for random regular graphs with K=10 �see Fig. 4�.

Figure 5 shows the phase diagram for the random regular
graph vertex cover problem with connectivity K=20. At this
connectivity we obtain results that are qualitatively different
from the results obtained for K=5 and 10. The RS mean-field
solution is locally stable when temperature T�TRS�20�
=0.2674. In this case, however, the dynamical transition tem-

FIG. 3. �Color online� Phase diagram of the 1RSB solution of
the vertex-cover problem on random regular graphs with vertex
degree K=5. When T�TRS�5�=Td�5�=TK�5��0.358 the RS mean-
field solution is stable �the shaded region� and 1RSB solution at
m=1 has only a trivial solution; when T�TRS�5�, the 1RSB solu-
tion is type-II stable only when the Parisi parameter m is located
above the solid line which connects the circular symbols. The val-
ues of the Parisi parameter m=m� which corresponds to zero com-
plexity and hence the dominating macroscopic states are given by
the dotted line. In this case, m� is always located in the type-II
unstable region. The dashed line represents the curve m=yIT, where
yI is the maximal value of y for which the 1RSB zero-temperature
energetic cavity solution is type-I stable.

FIG. 4. �Color online� Same as Fig. 3, but for random regular
graphs with vertex degree K=10.
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perature Td�K�, which is determined as the maximal tempera-
ture at which a nontrivial 1RSB solution at m=1 exists, does
not coincide with TRS�K�. For K=20, Td�20�=0.2793, and in
the temperature range TRS�20��T�Td�20�, nontrivial 1RSB
solutions for the VC problem exist if the Parisi parameter m
is beyond the boundary line between the white and the gray
region of Fig. 5. This result indicates that, in this temperature
range, 1RSB solution and RS solution are both stable. How-
ever the existence of a nontrivial 1RSB solution at m=1
indicates that the RS solution is in fact not the physically
meaningful one, as it does not describe the structure of the
configuration space correctly.

As an example, for K=20 and T=0.2703, the complexity
and the free-energy density of the 1RSB solution of the VC
problem are shown in Fig. 6 as a function of the Parisi pa-
rameter m. When m�0.8459, the 1RSB solution reduces
to the RS solution, which has free-energy density
fRS�0.800 06. A nontrivial 1RSB solution emerges for

m�0.8459 and this 1RSB solution becomes type-II stable
when m�0.9108. The complexity is a decreasing function of
m in the type-II stable region and it reaches zero at m
=0.9486 �correspondingly, the free-energy density of the
dominating 1RSB macroscopic states is f1RSB�0.800 08�.
Therefore the 1RSB free-energy density is only slightly
larger than the RS free-energy density. For the whole tem-
perature range TRS�20��T�Td�20� we have checked that
the free-energy density of the RS solution and that of the
1RSB solution at m=m��T� are always very close to each
other.

Figure 5 also demonstrates that, when the temperature T is
higher than 0.15, the line m��T�, which corresponds to the
dominating macroscopic states at each temperature, is lo-
cated in the 1RSB type-II stable region. If the 1RSB solution
is also type-I stable at m�m��T� �which we have checked to
be the case only for T=0, see the dashed line�, then for T
�0.15 the VC problem can be sufficiently described by the
1RSB solution without the need of further steps of replica
symmetry breaking. Further work is obviously needed to
study more closely the VC problem near the temperature
TRS�K�. For very low temperatures, however, the 1RSB so-
lution will become type-II unstable.

2. Case of random Erdös-Renyi graphs

Simulations on random ER graphs are technically more
difficult, and therefore we have studied only the cases of
mean vertex degree c=5 and c=10. For the case of c=5,
results similar to Figs. 3 and 4 are obtained. The results for
the case of c=10 are shown in Fig. 7. For this system, the
1RSB solution at m=m��T� is type-II stable when T�0.20.

C. Stability thresholds of the zero-temperature energetic
and entropic 1RSB cavity solution

As a check of the finite-temperature results, here we com-
pare the low-temperature results with the results obtained
directly at T=0. At the zero-temperature limit, two types of

FIG. 5. �Color online� Same as Fig. 3, but for random regular
graphs with vertex degree K=20. For T�TRS�20�=0.2674 the RS
mean-field solution is locally stable, while for T�Td�20�=TK�20�
=0.2793 a nontrivial 1RSB mean-field solution appears at m=1.
Notice that Td�20��TRS�20�. The boundary line �which connected
the + symbols� between the white and the shaded regions marks the
minimal value of m below which the 1RSB solution has no non-
trivial solutions. The inset is an enlarge of the main figure.

FIG. 6. �Color online� Complexity and mean free-energy density
at T=0.2703 for the VC problem on regular graphs with vertex
degree K=20.

FIG. 7. �Color online� Phase diagram of the 1RSB solution of
the VC problem on ER random graphs of mean vertex degree c
=10. The RS solution is stable for temperature T�TRS=Td=TK

=0.25. For this system the energetic zero-temperature 1RSB solu-
tion is type-I stable for y�0.
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1RSB solutions can be written down. The energetic 1RSB
solution �7,8�, which neglects all the entropic effect of the
VC problem, is much simplified. Both the type-I and type-II
stability analysis of this solution can be performed. In this
work, the type-II stability analysis is carried out through a
bug proliferation simulation �the detailed mathematical for-
mulas are given in Appendix B�.

The entropic 1RSB solution takes into account both the
energetic and the entropic effect and is numerically more
involved. For the vertex cover problem, following the en-
tropic zero-temperature RS solution of Sec. III B, we can
develop the 1RSB solution by defining the 1RSB order pa-
rameter Qj�i�mj�i ,rj�i�. The iteration equation for Qj�i reads,

Qj�i�m,r� =
1

Zj�i



k��j\i
�	

mk�j

� drk�jQk�j�mk�j,rk�j��
�e−y	Ej�i��m − mj�i���r − rj�i� , �50�

where mj�i and rj�i are expressed by Eqs. �24� and �25�.
When population dynamics is used to solve the entropic

1RSB equation Eq. �50�, it is observed that, if the reweight-
ing parameter y is lower than certain threshold value, the
magnitudes of some of the rj�i parameters may increase con-
tinuously with iteration and eventually diverge. This diver-
gence suggests that the zero-temperature entropic 1RSB so-
lution is not stable. We use this divergence criterion to
determine the type-II stability threshold of the zero-
temperature entropic 1RSB solution.

Figure 8 shows the stability boundaries of the finite tem-
perature 1RSB solution, the energetic zero-temperature
1RSB solution, and the zero-temperature entropic 1RSB so-
lution, for random regular graphs with K=20 and K=5. For
both K=20 and K=5, the type-II stability threshold yII and
value y� �determined by �=0� of the T=0 entropic 1RSB
solution match the corresponding slops in the T-m plane of
the finite-temperature 1RSB solution. At K=20 the T=0 en-
ergetic 1RSB solution has the same value of y� as that of the
entropic 1RSB solution; and the type-II stability threshold yII
of the energetic 1RSB solution is very close to that of the
entropic 1RSB solution.

The energetic 1RSB solution is stable for y�yI. Since
yI�y� at K=20, the zero-temperature 1RSB solutions at are
type-I stable y=y�. However, yI�y� for K=5, therefore the
zero-temperature 1RSB solutions are type-I unstable at y
=y�. At this value of vertex connectivity, the type-II stability
threshold yII as obtained for the 1RSB energetic solution and
the 1RSB entropic solution are different. The reason for this
difference is: when 1RSB solution is type-I unstable, the
factorizing condition Eq. �47� which we used to solve en-
tropic equation is no longer valid.

V. CONCLUSION

In summary, the vertex cover problem on finite-
connectivity random graphs were studied in this paper by
finite-temperature cavity method at both the replica-
symmetric and first-step replica-symmetry-breaking level,
and the stability of these mean-field solutions were analyzed.
We found that the local stability boundary TRS for the RS

solution and the dynamical transition temperature Td show a
re-entrant behavior with the connectivity both in the case of
random regular graphs and Poisson random graphs: the
threshold temperature TRS and Td first increases with connec-
tivity and then decreases with connectivity. The reason for
this re-entrant behavior �which is absent in the random
Q-coloring problem �16�� is not yet clear. For random regular
graphs with a relatively large connectivity �e.g., K=20�,
there exists a temperature region in which both the RS solu-
tion and the 1RSB solutions with the Parisi parameter m
close to unity are stable. This point deserves to be studied
further on single graphs by the belief-propagation iteration
process �2,33� using different initial conditions. At relatively
large connectivity, the VC problem at not too low tempera-
tures may be sufficiently described by the 1RSB cavity so-
lution without the need of further steps of replica symmetry
breaking. But at temperature close to zero, more complicated
mean-field solutions are needed �6,8,10�.

(b)

(a)

FIG. 8. �Color online� Comparison of finite temperature results
with the zero-temperature energetic and entropic 1RSB results for
regular random graphs of vertex degree �a� K=20 and �b� K=5.
Symbols are finite-temperature results. The dashed curve �yIT rep-
resent the slopes corresponding of type-I stability of the energetic
zero-temperature solutions. The energetic 1RSB solution is type-I
stable when y�yI. The dotted and dash-dotted curves represent the
slopes corresponding to type-II stability of the �energetic and en-
tropic� zero-temperature 1RSB solution. The 1RSB solution is
type-II stable when y�yII. The dash-dotted and short-dashed
curves represent the slopes corresponding to y��=0� of the �ener-
getic and entropic� zero-temperature 1RSB solution.
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APPENDIX A: CALCULATION OF THE DYNAMICAL
TRANSITION TEMPERATURE Td

The dynamical transition temperature Td is defined as the
highest temperature for the 1RSB cavity equation at Parisi
parameter m=1 to have a nontrivial solution. To calculate Td,
one may solve the 1RSB equation Eq. �37� with m=1 using
population dynamics, but numerically this is quite demand-

ing, as population of populations is needed and different
macrostates should be properly reweighed. It was first no-
ticed in Ref. �28� that the 1RSB equation at m=1 may be
solved without using populations of populations and re-
weighing of macrostates, and this possibility of simplifica-
tion was exploited in various later studies �17–19,34,35�. In
this appendix, we follow Ref. �17� to solve Eq. �37� at y
=� �i.e., m=1�.

At m=1 the mean cavity cover ratio �̄ j�i
��d� j�iQj�i�� j�i�� j�i satisfies the following iteration equa-
tion:

�̄ j�i =
e−�

e−� + 
k��j\i�̄k�j
, �A1�

which has the same form as the RS iteration equation �9�.
Therefore, distribution of �̄ j�i among all the edges of the
graph is given by PRS, see Eq. �12�. Define Q�� � �̄� as the
conditional probability that the cavity cover ratio is equal to
� when its mean value is �̄. We have

Q����̄�PRS��̄� =� DQP1RSB�Q�Q������̄ −� d�Q�����
= 	

k=0




pnn�k + 1�� 

j=1

k

DQjP1RSB�Qj�
�
 j=1

k d� jQj�� j��e−� + 
 j� j�
e−� + 
 j�̄ j

��� − FRS��� j������̄ − FRS���̄ j���

= 	
k=0




pnn�k + 1�� 

j=1

k

d�̄ jPRS��̄ j����̄ − FRS���̄ j���
�
 jd� jQj�� j��̄ j��e−� + 
 j� j�

e−� + 
 j�̄ j

��� − FRS��� j��� . �A2�

In deriving Eq. �A2�, we have used the identity that Qj�� � �̄���DQjP1RSB�Qj � �̄�Qj���, with P1RSB�Qj � �̄� being the condi-
tional probability of Qj given that the mean value of the cavity cover ratio is �̄. P1RSB�Qj � �̄� is related to P1RSB�Qj� by

P1RSB�Qj��̄� =
P1RSB�Qj����̄ − �d�Qj�����

�DQjP1RSB�Qj����̄ − �d�Qj����� =
P1RSB�Qj����̄ − �d�Qj�����

PRS��̄�
. �A3�

To get rid of the reweighing term �e−�+
 j� j� in Eq. �A2�, we define Q�j
�� j � �̄ j� as the conditional distribution that the

cavity cover ratio of vertex j is equal to � j given that the mean cavity cover ratio of vertex j is �̄ j and that vertex j is in the
spin state � j. We have

Q�j
�� j��̄ j� �

��j
Q�� j��̄ j�

�̄�j

, �A4�

where ��j
= �1−� j���j,1

+� j��j,−1 is the probability distribution of � j, and �̄�j
= �1− �̄ j���j,1

+ �̄ j��j,−1. Then Eq. �A2� can be
rewritten as

Q����̄�PRS��̄� = 	
k=0




pnn�k + 1�� 

j=1

k

d�̄ jPRS��̄ j����̄ − FRS���̄ j���

�	
�i

	
��j�

��i,−1e−� + ��i,1

 j�̄ j��j,−1

e−� + 
 j�̄ j
� 


j=1

k

d� jQ�j
�� j��̄ j���� − FRS��� j��� . �A5�
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From the above equation and the identity that

Q����̄� = 	
�

�̄�Q�����̄� , �A6�

we obtain an iterative equation for Q��� � �̄�,

�̄�Q�����̄�PRS��̄� = 	
k=0




pnn�k + 1�� 

j=1

k

d�̄ jPRS��̄ j��

���̄ − FRS���̄ j���

� 	
��j�

e−���,−1 + ��,1
 j�̄ j��j,−1

e−� + 
 j�̄ j

�� 

j=0

k

d� jQ��� j��̄ j����

− FRS��� j��� . �A7�

According to Ref. �28�, the 1RSB cavity equation Eq. �37�
at m=1 has a nontrivial fixed point if Eq. �A7� has a non-
trivial solution with the initial conditions Q1��=0 � �̄�=1 and
Q−1��=1 � �̄�=1, see also Refs. �17,19,34,35�.

APPENDIX B: ENERGETIC ZERO-TEMPERATURE
STABILITY ANALYSIS

In this section, bug proliferation is used to analyze the
type-II instability of 1-RSB solutions in vertex cover prob-
lems. We introduce a message, the so-called warning uj→i
sent from vertex j to a neighbor i. If the vertex j is uncov-
ered, it sends a warning uj→i=1 to i, otherwise uj→i=0. To
do survey propagation, �i�j

�0���i�j
�1�� is used to represent the

probability that vertex i is always uncovered �covered� when
j is removed in a cluster. Similarly, �i�j

��� is the probability that
i is unfrozen in the above situation.

�i�l
�0� = ci�l

−1 

j�N�i�\l

�1 − � j�i
�0�� , �B1�

�i�l
��� = ci�l

−1e−y 	
j�N�i�\l

� j�i
�0� 


j��N�i�\�j,l�

�1 − � j��i
�0� � , �B2�

�i�l
�1� = ci�l

−1e−y�1 − 

j�N�i�\l

�1 − � j�i
�0�� − 	

j�N�i�\l
� j�i

�0� 

j��N�i�\�j,l�

��1 − � j��i
�0� �� , �B3�

ci�l = e−y�1 − �1 − ey� 

j�N�i�\l

�1 − � j�i
�0��� . �B4�

To analyze the type-II instability, a “bug” is introduced
and propagated on a graph. Here “bug” means supposed that
along edge 1 the warning is �1, we turn it to another type
such as �0 with a very small probability p�1→�0

1 . After one
iteration, this will induce a new “bug” �→� on edge l as an
output and the probability of this situation is

p�→�
l =

1

Z
	

��1,¯,�n�→�

��0,¯,�n�→�

�p�1→�0

1
¯ p�n

n �exp�− y	E�� .

�B5�

Thus we can define a matrix,

V�→�,�1→�0
�

�p�→�
l

�p�1→�0

1 . �B6�

The bug is propagated on the graph and if it can prolifer-
ate the system is unstable. After d times of iterations, abso-
lutely the criterion of such an instability is determined by a
product of d matrices

C · ��MAX� � �d �B7�

where �MAX is the largest eigenvalue of matrix V1 . . .Vd. If �d
grows exponentially with d, the solution is unstable other-
wise it is stable. Here the matrix V is simply just 2�2,

�V0→1,0→1 V0→1,1→0

V1→0,0→1 V1→0,1→0
 �B8�

It is easy to get that

V0→1,1→0 =
ey
k�N�i�\j,l�1 − �k�j

�0��

1 − �1 − ey�
k�N�i�\j�1 − �k�j
�0��

, �B9�

V1→0,0→1 =

k�N�i�\j,l�1 − �k�j

�0��

1 − �1 − ey�
k�N�i�\j�1 − �k�j
�0��

, �B10�

and V0→1,0→1=V1→0,1→0=0.
Solution about above equations and �d can be obtained

through population dynamics. We have applied this analysis
on the 1RSB solution of the vertex cover problem with mean
vertex degree c=10. The results are shown in Fig. 9. We
estimate the threshold yII�3.301. Considering that the y��
=0�=3.13, we therefore conclude that thermodynamics of
the energetic zero-temperature 1RSB solution of the vertex
cover problem is unstable.

FIG. 9. Stability of the 1RSB solution of vertex-cover problem
on ER random graphs with average connectivity c=10. ln �d is
plotted versus d for different y. From top to bottom: y
=2,3 ,3.3,3.5,3.55, and the lines are the linear fits.
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